Search results

Search for "square-wave voltammetry" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • (CV), differential pulse voltammetry (DPV), square wave voltammetry (SWV), linear sweep voltammetry (LSV), and stripping voltammetry are well-established voltammetric techniques that are frequently used for electrochemical sensing of antibiotic and hormone residues [62]. However, other methods for the
PDF
Album
Review
Published 01 Jun 2023

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • ; graphene oxide; nonenzymatic approach; parathion; pesticides; square-wave voltammetry; Introduction Crop production is constantly increasing to fulfil the demands of the growing population. The protection of crops against insects is a big challenge for our society. Pesticides have indiscriminately been
  • performed from +0.5 to −1.0 V versus Ag/AgCl, with a scan rate of 100 mV·s−1. Square-wave voltammetry (SWV) analysis was performed from −0.3 to +0.9 V versus Ag/AgCl, with pulse amplitude of 100 mV, frequency of 25 Hz, and modulation time of 10 s in 50 mM PBS. The nanosensor was cycled 25 times for signal
  • oxidation peak (Epa) potential of PT as a function of pH is near −59 mV, which suggests that the same number of e− and H+ is involved in the reaction [38][39]. Optimization of square-wave voltammetry parameters Square-wave voltammetry analysis is more accurate compared to an electrochemical method such as
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Voltammetric determination of polyphenolic content in pomegranate juice using a poly(gallic acid)/multiwalled carbon nanotube modified electrode

  • Refat Abdel-Hamid and
  • Emad F. Newair

Beilstein J. Nanotechnol. 2016, 7, 1104–1112, doi:10.3762/bjnano.7.103

Graphical Abstract
  • positive potential values. The dependence of peak current on accumulation potential, accumulation time and pH were investigated by square-wave voltammetry (SWV) to optimize the experimental conditions for the determination of GA. Using the optimized conditions, the sensor responded linearly to a GA
  • modified and characterized using scanning electron microscope (SEM), cyclic voltammetry, chronoamperometry and chronocoulometry. To validate the suggested procedure, the determination of total phenolic content in pomegranate juice was performed using square-wave voltammetry. The results collected at
PDF
Album
Full Research Paper
Published 29 Jul 2016

Gold nanoparticles covalently assembled onto vesicle structures as possible biosensing platform

  • M. Fátima Barroso,
  • M. Alejandra Luna,
  • Juan S. Flores Tabares,
  • Cristina Delerue-Matos,
  • N. Mariano Correa,
  • Fernando Moyano and
  • Patricia G. Molina

Beilstein J. Nanotechnol. 2016, 7, 655–663, doi:10.3762/bjnano.7.58

Graphical Abstract
  • electrochemical impedance spectroscopy or square wave voltammetry [22][23]. It is known that antibodies can be immobilized onto AuNPs without losing their biological properties [24][25]. Thus, the covalent immobilization of vesicles decorated with AuNPs on a gold surface could increase the amount of immobilized
PDF
Album
Full Research Paper
Published 02 May 2016

Glassy carbon electrodes modified with multiwalled carbon nanotubes for the determination of ascorbic acid by square-wave voltammetry

  • Sushil Kumar and
  • Victoria Vicente-Beckett

Beilstein J. Nanotechnol. 2012, 3, 388–396, doi:10.3762/bjnano.3.45

Graphical Abstract
  • no significant difference (P = 0.05). Keywords: ascorbic acid; carbon nanotubes; glassy carbon electrode; square-wave voltammetry; Introduction L-ascorbic acid (AA), also known as vitamin C, is a well-known antioxidant, which helps the human body to reduce oxidative damage and protects food quality
  • carbon nanotubes were used to modify the surface of a glassy carbon electrode to enhance its electroactivity. Nafion served to immobilise the carbon nanotubes on the electrode surface. The modified electrode was used to develop an analytical method for the analysis of ascorbic acid (AA) by square-wave
  • -wave voltammetry (SWV), have been employed as alternative tools for the evaluation of antioxidant activity [8]. These methods are attractive because of the speed of analysis, simplicity and low cost of the instrumental requirements. Ascorbic acid oxidation at a bare glassy carbon electrode (GCE
PDF
Album
Full Research Paper
Published 10 May 2012
Other Beilstein-Institut Open Science Activities